Revisiting the Space Weather Environment of Proxima Centauri b

Author:

Garraffo CeciliaORCID,Alvarado-Gómez Julián D.ORCID,Cohen OferORCID,Drake Jeremy J.ORCID

Abstract

Abstract Close-in planets orbiting around low-mass stars are exposed to intense energetic photon and particle radiation and harsh space weather. We have modeled such conditions for Proxima Centauri b, a rocky planet orbiting in the habitable zone of our closest neighboring star, finding a stellar wind pressure 3 orders of magnitude higher than the solar wind pressure on Earth. At that time, no Zeeman–Doppler observations of the surface magnetic field distribution of Proxima Cen were available and a proxy from a star with a similar Rossby number to Proxima was used to drive the MHD model. Recently, the first Zeeman–Doppler imaging (ZDI) observation of Proxima Cen became available. We have modeled Proxima b’s space weather using this map and compared it with the results from the proxy magnetogram. We also computed models for a high-resolution synthetic magnetogram for Proxima b generated by a state-of-the-art dynamo model. The resulting space weather conditions for these three scenarios are similar with only small differences found between the models based on the ZDI observed magnetogram and the proxy. We conclude that our proxy magnetogram prescription based on the Rossby number is valid, and provides a simple way to estimate stellar magnetic flux distributions when no direct observations are available. Comparisons with models based on the synthetic magnetogram show that the exact magnetogram details are not important for predicting global space weather conditions of planets, reinforcing earlier conclusions that the large-scale (low-order) field dominates, and that the small-scale field does not have much influence on the ambient stellar wind.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3