Narrow Loophole for H2-Dominated Atmospheres on Habitable Rocky Planets around M Dwarfs

Author:

Hu RenyuORCID,Gaillard Fabrice,Kite Edwin S.ORCID

Abstract

Abstract Habitable rocky planets around M dwarfs that have H2-dominated atmospheres, if they exist, would permit characterizing habitable exoplanets with detailed spectroscopy using JWST, owing to their extended atmospheres and small stars. However, the H2-dominated atmospheres that are consistent with habitable conditions cannot be too massive, and a moderate-sized H2-dominated atmosphere will lose mass to irradiation-driven atmospheric escape on rocky planets around M dwarfs. We evaluate volcanic outgassing and serpentinization as two potential ways to supply H2 and form a steady-state H2-dominated atmosphere. For rocky planets of 1–7 M and early-, mid-, and late M-type dwarfs, the expected volcanic outgassing rates from a reduced mantle fall short of the escape rates by > ∼ 1 order of magnitude, and a generous upper limit of the serpentinization rate is still less than the escape rate by a factor of a few. Special mechanisms that may sustain the steady-state H2-dominated atmosphere include direct interaction between liquid water and mantle, heat-pipe volcanism from a reduced mantle, and hydrodynamic escape slowed down by efficient upper-atmospheric cooling. It is thus unlikely to find moderate-size, H2-dominated atmospheres on rocky planets of M dwarfs that would support habitable environments.

Funder

NASA ∣ SMD ∣ Astrophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GJ 367b Is a Dark, Hot, Airless Sub-Earth;The Astrophysical Journal Letters;2024-01-30

2. Carbon-bearing Molecules in a Possible Hycean Atmosphere;The Astrophysical Journal Letters;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3