Carbon-bearing Molecules in a Possible Hycean Atmosphere

Author:

Madhusudhan NikkuORCID,Sarkar SubhajitORCID,Constantinou SavvasORCID,Holmberg MånsORCID,Piette Anjali A. A.ORCID,Moses Julianne I.ORCID

Abstract

Abstract The search for habitable environments and biomarkers in exoplanetary atmospheres is the holy grail of exoplanet science. The detection of atmospheric signatures of habitable Earth-like exoplanets is challenging owing to their small planet–star size contrast and thin atmospheres with high mean molecular weight. Recently, a new class of habitable exoplanets, called Hycean worlds, has been proposed, defined as temperate ocean-covered worlds with H2-rich atmospheres. Their large sizes and extended atmospheres, compared to rocky planets of the same mass, make Hycean worlds significantly more accessible to atmospheric spectroscopy with JWST. Here we report a transmission spectrum of the candidate Hycean world K2-18 b, observed with the JWST NIRISS and NIRSpec instruments in the 0.9–5.2 μm range. The spectrum reveals strong detections of methane (CH4) and carbon dioxide (CO2) at 5σ and 3σ confidence, respectively, with high volume mixing ratios of ∼1% each in a H2-rich atmosphere. The abundant CH4 and CO2, along with the nondetection of ammonia (NH3), are consistent with chemical predictions for an ocean under a temperate H2-rich atmosphere on K2-18 b. The spectrum also suggests potential signs of dimethyl sulfide (DMS), which has been predicted to be an observable biomarker in Hycean worlds, motivating considerations of possible biological activity on the planet. The detection of CH4 resolves the long-standing missing methane problem for temperate exoplanets and the degeneracy in the atmospheric composition of K2-18 b from previous observations. We discuss possible implications of the findings, open questions, and future observations to explore this new regime in the search for life elsewhere.

Funder

UK Research and Innovation

UKRI ∣ Science and Technology Facilities Council (STFC) ∣ Center for Doctoral Training

MERAC Foundation

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3