Deciphering Solar Coronal Heating: Energizing Small-scale Loops through Surface Convection

Author:

Nóbrega-Siverio D.ORCID,Moreno-Insertis F.,Galsgaard K.ORCID,Krikova K.ORCID,Rouppe van der Voort L.ORCID,Joshi R.ORCID,Madjarska M. S.ORCID

Abstract

Abstract The solar atmosphere is filled with clusters of hot small-scale loops commonly known as coronal bright points (CBPs). These ubiquitous structures stand out in the Sun by their strong X-ray and/or extreme-ultraviolet (EUV) emission for hours to days, which makes them a crucial piece when solving the solar coronal heating puzzle. In addition, they can be the source of coronal jets and small-scale filament eruptions. Here we present a novel 3D numerical model using the Bifrost code that explains the sustained CBP heating for several hours. We find that stochastic photospheric convective motions alone significantly stress the CBP magnetic field topology, leading to important Joule and viscous heating concentrated around the CBP’s inner spine at a few megameters above the solar surface. We also detect continuous upflows with faint EUV signals resembling observational dark coronal jets and small-scale eruptions when Hα fibrils interact with the reconnection site. We validate our model by comparing simultaneous CBP observations from the Solar Dynamics Observatory (SDO) and the Swedish 1‐m Solar Telescope (SST) with observable diagnostics calculated from the numerical results for EUV wavelengths as well as for the Hα line using the Multi3D synthesis code. Additionally, we provide synthetic observables to be compared with Hinode, Solar Orbiter, and the Interface Region Imaging Spectrograph (IRIS). Our results constitute a step forward in the understanding of the many different facets of the solar coronal heating problem.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Barcelona Supercomputing Center

International Space Science Institute

Research Council of Norway

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3