Radiative Magnetohydrodynamic Simulation of the Confined Eruption of a Magnetic Flux Rope: Magnetic Structure and Plasma Thermodynamics

Author:

Wang CanORCID,Chen FengORCID,Ding MingdeORCID,Lu ZekunORCID

Abstract

Abstract It is widely believed that magnetic flux ropes are the key structure of solar eruptions; however, their observable counterparts are not clear yet. We study a flare associated with flux rope eruption in a comprehensive radiative magnetohydrodynamic simulation of flare-productive active regions, especially focusing on the thermodynamic properties of the plasma involved in the eruption and their relation to the magnetic flux rope. The preexisting flux rope, which carries cold and dense plasma, rises quasi-statically before the onset of eruptions. During this stage, the flux rope does not show obvious signatures in extreme ultraviolet (EUV) emission. After the flare onset, a thin “current shell” is generated around the erupting flux rope. Moreover, a current sheet is formed under the flux rope, where two groups of magnetic arcades reconnect and create a group of postflare loops. The plasma within the “current shell,” current sheet, and postflare loops are heated to more than 10 MK. The postflare loops give rise to abundant soft X-ray emission. Meanwhile, a majority of the plasma hosted in the flux rope is heated to around 1 MK, and the main body of the flux rope is manifested as a bright arch in cooler EUV passbands such as the AIA 171 Å channel.

Funder

NSFC ∣ Key Programme

MOST ∣ National Key Research and Development Program of China

Program for Innovative Talents and Entrepreneurs in Jiangsu

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3