Radiative Magnetohydrodynamic Simulation of the Confined Eruption of a Magnetic Flux Rope: Unveiling the Driving and Constraining Forces

Author:

Wang CanORCID,Chen FengORCID,Ding MingdeORCID,Lu ZekunORCID

Abstract

Abstract We analyze the forces that control the dynamic evolution of a flux rope eruption in a three-dimensional radiative magnetohydrodynamic simulation. The confined eruption of the flux rope gives rise to a C8.5 flare. The flux rope rises slowly with an almost constant velocity of a few kilometers per second in the early stage when the gravity and Lorentz force are nearly counterbalanced. After the flux rope rises to the height at which the decay index of the external poloidal field satisfies the torus instability criterion, the significantly enhanced Lorentz force breaks the force balance and drives the rapid acceleration of the flux rope. Fast magnetic reconnection is immediately induced within the current sheet under the erupting flux rope, which provides strong positive feedback to the eruption. The eruption is eventually confined due to the tension force from the strong external toroidal field. Our results suggest that the gravity of plasma plays an important role in sustaining the quasi-static evolution of the preeruptive flux rope. The Lorentz force, which is contributed from both the ideal magnetohydrodynamic instability and magnetic reconnection, dominates the dynamic evolution during the eruption process.

Funder

MOST ∣ National Key Research and Development Program of China

NSFC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3