Adjusting the Potential Field Source Surface Height Based on Magnetohydrodynamic Simulations

Author:

Huang ZhenguangORCID,Tóth GáborORCID,Huang JiaORCID,Sachdeva NishthaORCID,van der Holst BartORCID,Manchester Ward B.ORCID

Abstract

Abstract A potential field solution is widely used to extrapolate the coronal magnetic field above the Sun’s surface to a certain height. This model applies the current-free approximation and assumes that the magnetic field is entirely radial beyond the source surface height, which is defined as the radial distance from the center of the Sun. Even though the source surface is commonly specified at 2.5 R s (solar radii), previous studies have suggested that this value is not optimal in all cases. In this study, we propose a novel approach to specify the source surface height by comparing the areas of the open magnetic field regions from the potential field solution with predictions made by a magnetohydrodynamic model, in our case the Alfvén Wave Solar atmosphere Model. We find that the adjusted source surface height is significantly less than 2.5 R s near solar minimum and slightly larger than 2.5 R s near solar maximum. We also report that the adjusted source surface height can provide a better open flux agreement with the observations near the solar minimum, while the comparison near the solar maximum is slightly worse.

Funder

NASA ∣ SMD ∣ Heliophysics Division

NSF ∣ GEO ∣ Division of Atmospheric and Geospace Sciences

NSF ∣ MPS ∣ Division of Physics

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3