Influence of Orbit and Mass Constraints on Reflected Light Characterization of Directly Imaged Rocky Exoplanets

Author:

Salvador ArnaudORCID,Robinson Tyler D.ORCID,Fortney Jonathan J.ORCID,Marley Mark S.ORCID

Abstract

Abstract Survey strategies for upcoming exoplanet direct imaging missions have considered varying assumptions of prior knowledge. Precursor radial velocity surveys could have detected nearby exo-Earths and provided prior orbit and mass constraints. Alternatively, a direct imaging mission performing astrometry could yield constraints on the orbit and phase angle of target planets. Understanding the impact of prior mass and orbit information on planetary characterization is crucial for efficiently recognizing habitable exoplanets. To address this question, we use a reflected-light retrieval tool to infer the atmospheric and bulk properties of directly imaged Earth-analogs while considering varying levels of prior information and signal-to-noise ratio (S/N). Because of the strong correlation between the orbit-related parameters and the planetary radius, prior information on the orbital distance and planetary phase angle yield much tighter constraints on the planetary radius: from R p = 2.95 1.95 + 2.69 R without prior knowledge, to R p = 1.01 0.19 + 0.33 R with prior determination of the orbit for S/N = 20 in the visible/near-infrared spectral range, thus allowing size determination from reflected light observations. However, additional knowledge of planet mass does not notably enhance radius ( R p = 0.98 0.14 + 0.17 R ) or atmospheric characterization. Also, prior knowledge of the mass alone does not yield a tight radius constraint ( R p = 1.64 0.80 + 1.29 R ) nor improves atmospheric composition inference. By contrast, because of its sensitivity to gas column abundance, detecting a Rayleigh scattering slope or bounding Rayleigh opacity helps to refine gas mixing ratio inferences without requiring prior mass knowledge. Overall, apart from radius determination, increasing the S/N is more beneficial than additional prior observations.

Funder

National Aeronautics and Space Administration

NASA Exoplanet Science Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3