Faint Active Galactic Nuclei Favor Unexpectedly Long Inter-band Time Lags

Author:

Li Ting,Sun MouyuanORCID,Xu XiaoyuORCID,Brandt W. N.ORCID,Trump Jonathan R.ORCID,Yu ZhefuORCID,Wang JunxianORCID,Xue YongquanORCID,Cai ZhenyiORCID,Gu Wei-MinORCID,Homayouni Y.ORCID,Liu TongORCID,Wang Jun-FengORCID,Zhang ZhixiangORCID,Li Hai-Kun

Abstract

Abstract Inconsistent conclusions are obtained from recent active galactic nuclei (AGNs) accretion disk inter-band time-lag measurements. While some works show that the measured time lags are significantly larger (by a factor of ∼3) than the theoretical predictions of the Shakura & Sunyaev disk (SSD) model, others find that the time-lag measurements are consistent with (or only slightly larger than) that of the SSD model. These conflicting observational results might be symptoms of our poor understanding of AGN accretion physics. Here we show that sources with larger-than-expected time lags tend to be less luminous AGNs. Such a dependence is unexpected if the inter-band time lags are attributed to the light-travel-time delay of the illuminating variable X-ray photons to the static SSD. If, instead, the measured inter-band lags are related not only to the static SSD but also to the outer broad emission-line regions (BLRs; e.g., the blended broad emission lines and/or diffuse continua), our result indicates that the contribution of the non-disk BLR to the observed ultraviolet/optical continuum decreases with increasing luminosity (L), i.e., an anti-correlation resembling the well-known Baldwin effect. Alternatively, we argue that the observed dependence might be a result of coherent disk thermal fluctuations as the relevant thermal timescale, τ THL 0.5. With future accurate measurements of inter-band time lags, the above two scenarios can be distinguished by inspecting the dependence of inter-band time lags upon either the BLR components in the variable spectra or the timescales.

Funder

National Natural Science Foundation of China

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3