How Long Will the Quasar UV/Optical Flickering Be Damped?

Author:

Zhou ShuyingORCID,Sun MouyuanORCID,Cai Zhen-YiORCID,Ren GuoweiORCID,Wang Jun-XianORCID,Xue YongquanORCID

Abstract

Abstract The UV/optical light curves of Active Galactic Nuclei (AGNs) are commonly described by the Damped Random Walk (DRW) model. However, the physical interpretation of the damping timescale, a key parameter in the DRW model, remains unclear. Particularly, recent observations indicate a weak dependence of the damping timescale upon both wavelength and accretion rate, clearly being inconsistent with the accretion-disk theory. In this study, we investigate the damping timescale in the framework of the Corona Heated Accretion disk Reprocessing (CHAR) model, a physical model that describes AGN variability. We find that while the CHAR model can reproduce the observed power spectral densities of the 20 yr light curves for 190 sources from Stone et al., the observed damping timescale, as well as its weak dependence on wavelength, can also be well recovered through fitting the mock light curves with DRW. We further demonstrate that such weak dependence is artificial due to the effect of inadequate durations of light curves, which leads to best-fitting damping timescales lower than the intrinsic ones. After eliminating this effect, the CHAR model indeed yields a strong dependence of the intrinsic damping timescale on the bolometric luminosity and rest-frame wavelength. Our results highlight the demand for sufficiently long light curves in AGN variability studies and important applications of the CHAR model in such studies.

Funder

NSFC

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3