Testing the Galaxy-collision-induced Formation Scenario for the Trail of Dark-matter-deficient Galaxies with the Susceptibility of Globular Clusters to the Tidal Force

Author:

Ogiya GoORCID,van den Bosch Frank C.ORCID,Burkert AndreasORCID,Kang XiORCID

Abstract

Abstract It has been suggested that a trail of diffuse galaxies, including two dark-matter-deficient galaxies (DMDGs), in the vicinity of NGC 1052 formed because of a high-speed collision between two gas-rich dwarf galaxies, one bound to NGC 1052 and the other one on an unbound orbit. The collision compresses the gas reservoirs of the colliding galaxies, which in turn triggers a burst of star formation. In contrast, the dark matter and preexisting stars in the progenitor galaxies pass through it. Since the high pressures in the compressed gas are conducive to the formation of massive globular clusters (GCs), this scenario can explain the formation of DMDGs with large populations of massive GCs, consistent with the observations of NGC 1052-DF2 (DF2) and NGC 1052-DF4. A potential difficulty with this “mini bullet cluster” scenario is that the observed spatial distributions of GCs in DMDGs are extended. GCs experience dynamical friction causing their orbits to decay with time. Consequently, their distribution at formation should have been even more extended than that observed at present. Using a semianalytic model, we show that the observed positions and velocities of the GCs in DF2 imply that they must have formed at a radial distance of 5–10 kpc from the center of DF2. However, as we demonstrate, the scenario is difficult to reconcile with the fact that the strong tidal forces from NGC 1052 strip the extendedly distributed GCs from DF2, requiring 33–59 massive GCs to form at the collision to explain observations.

Funder

National Key Research and Development Program of China

MOE ∣ Fundamental Research Funds for the Central Universities

CSU ∣ Fundamental Research Funds for Central Universities of the Central South University

NSFC ∣ Major Research Plan

China Manned Space project

National Basic Science Data Center

National Aeronautics and Space Administration

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3