A fully general, non-perturbative treatment of impulsive heating

Author:

Banik Uddipan1ORCID,van den Bosch Frank C1ORCID

Affiliation:

1. Department of Astronomy, Yale University, PO. Box 208101, New Haven, CT 06520, USA

Abstract

ABSTRACT Impulsive encounters between astrophysical objects are usually treated using the distant tide approximation (DTA) for which the impact parameter, b, is assumed to be significantly larger than the characteristic radii of the subject, rS, and the perturber, rP. The perturber potential is then expanded as a multipole series and truncated at the quadrupole term. When the perturber is more extended than the subject, this standard approach can be extended to the case where rS ≪ b < rP. However, for encounters with b of order rS or smaller, the DTA typically overpredicts the impulse, Δv, and hence the internal energy change of the subject, ΔEint. This is unfortunate, as these close encounters are the most interesting, potentially leading to tidal capture, mass stripping, or tidal disruption. Another drawback of the DTA is that ΔEint is proportional to the moment of inertia, which diverges unless the subject is truncated or has a density profile that falls off faster than r−5. To overcome these shortcomings, this paper presents a fully general, non-perturbative treatment of impulsive encounters which is valid for any impact parameter, and not hampered by divergence issues, thereby negating the necessity to truncate the subject. We present analytical expressions for Δv for a variety of perturber profiles, apply our formalism to both straight-path encounters and eccentric orbits, and discuss the mass-loss due to tidal shocks in gravitational encounters between equal-mass galaxies.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3