Crustal Magnetic Fields Do Not Lead to Large Magnetic-field Amplifications in Binary Neutron Star Mergers

Author:

Chabanov MichailORCID,Tootle Samuel D.ORCID,Most Elias R.ORCID,Rezzolla LucianoORCID

Abstract

Abstract The amplification of magnetic fields plays an important role in explaining numerous astrophysical phenomena associated with binary neutron star mergers, such as mass ejection and the powering of short gamma-ray bursts. Magnetic fields in isolated neutron stars are often assumed to be confined to a small region near the stellar surface, while they are normally taken to fill the whole star in numerical modeling of mergers. By performing high-resolution, global, and high-order general-relativistic magnetohydrodynamic simulations, we investigate the impact of a purely crustal magnetic field and contrast it with the standard configuration consisting of a dipolar magnetic field with the same magnetic energy but filling the whole star. While the crust configurations are very effective in generating strong magnetic fields during the Kelvin–Helmholtz-instability stage, they fail to achieve the same level of magnetic-field amplification of the full-star configurations. This is due to the lack of magnetized material in the neutron-star interiors to be used for further turbulent amplification and to the surface losses of highly magnetized matter in the crust configurations. Hence, the final magnetic energies in the two configurations differ by more than 1 order of magnitude. We briefly discuss the impact of these results on astrophysical observables and how they can be employed to deduce the magnetic topology in merging binaries.

Funder

Hessisches Ministerium für Wissenschaft und Kunst

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3