Abstract
Abstract
We analyze the micro-kinetic stability of the electron strahl in the solar wind depending on heliocentric distance. The oblique fast-magnetosonic/whistler (FM/W) instability has emerged in the literature as a key candidate mechanism for the effective scattering of the electron strahl into the electron halo population. Using data from the Parker Solar Probe (PSP) and Helios, we compare the measured strahl properties with the analytical thresholds for the oblique FM/W instability in the low- and high-β
∥c
regimes, where β
∥c
is the ratio of the core parallel thermal pressure to the magnetic pressure. Our PSP and Helios data show that the electron strahl is on average stable against the oblique FM/W instability in the inner heliosphere. Our analysis suggests that the instability, if at all, can only be excited sporadically and on short timescales. We discuss the caveats of our analysis and potential alternative explanations for the observed scattering of the electron strahl in the solar wind. Furthermore, we recommend the numerical evaluation of the stability of individual distributions in the future to account for any uncertainties in the validity of the analytical expressions for the instability thresholds.
Funder
STFC Ernest Rutherford Fellowship
STFC grant
STFC Consolidated Grant
ESA Networking/Partnering Initiative (NPI) contract
Colombian pro-gramme Pasaporte a la Ciencia, Foco Sociedad - Reto3, ICETEX grant
UCL Impact Studentship, joint funded by the ESA NPI contract
STFC consolidated Grant
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献