Whistler waves generated inside magnetic dips in the young solar wind: Observations of the search-coil magnetometer on board Parker Solar Probe

Author:

Froment C.ORCID,Agapitov O. V.ORCID,Krasnoselskikh V.ORCID,Karbashewski S.ORCID,Dudok de Wit T.ORCID,Larosa A.ORCID,Colomban L.ORCID,Malaspina D.ORCID,Kretzschmar M.ORCID,Jagarlamudi V. K.ORCID,Bale S. D.ORCID,Bonnell J. W.ORCID,Mozer F. S.ORCID,Pulupa M.ORCID

Abstract

Context. Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. Aims. Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves. Methods. We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion. Results. Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip. Conclusions. We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind.

Funder

NASA

CNES

STFC

NSF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3