Late-time H/He-poor Circumstellar Interaction in the Type Ic Supernova SN 2021ocs: An Exposed Oxygen–Magnesium Layer and Extreme Stripping of the Progenitor*

Author:

Kuncarayakti H.ORCID,Maeda K.ORCID,Dessart L.ORCID,Nagao T.ORCID,Fulton M.ORCID,Gutiérrez C. P.,Huber M. E.ORCID,Young D. R.ORCID,Kotak R.ORCID,Mattila S.,Anderson J. P.ORCID,Ferrari L.,Folatelli G.,Gao H.ORCID,Magnier E.ORCID,Smith K. W.ORCID,Srivastav S.ORCID

Abstract

Abstract Supernova (SN) 2021ocs was discovered in the galaxy NGC 7828 (z = 0.01911) within the interacting system Arp 144 and subsequently classified as a normal Type Ic SN around peak brightness. Very Large Telescope/FORS2 observations in the nebular phase at 148 days reveal that the spectrum is dominated by oxygen and magnesium emission lines of different transitions and ionization states: O i, [O i], [O ii], [O iii], Mg i, and Mg ii. Such a spectrum has no counterpart in the literature, though it bears a few features similar to those of some interacting Type Ibn and Icn SNe. Additionally, SN 2021ocs showed a blue color, (gr) ≲ −0.5 mag, after the peak and up to late phases, atypical for a Type Ic SN. Together with the nebular spectrum, this suggests that SN 2021ocs underwent late-time interaction with an H/He-poor circumstellar medium (CSM) resulting from the pre-SN progenitor mass loss during its final ∼1000 days. The strong O and Mg lines and the absence of strong C and He lines suggest that the progenitor star’s O–Mg layer is exposed, which places SN 2021ocs as the most extreme case of a massive progenitor star’s envelope stripping in interacting SNe, followed by Type Icn (stripped C–O layer) and Ibn (stripped He-rich layer) SNe. This is the first time such a case is reported in the literature. The SN 2021ocs emphasizes the importance of late-time spectroscopy of SNe, even for those classified as normal events, to reveal the inner ejecta and progenitor star’s CSM and mass loss.

Funder

Academy of Finland

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3