Could the Migration of Jupiter Have Accelerated the Atmospheric Evolution of Venus?

Author:

Kane Stephen R.ORCID,Vervoort Pam,Horner JonathanORCID,Pozuelos Francisco J.ORCID

Abstract

Abstract In the study of planetary habitability and terrestrial atmospheric evolution, the divergence of surface conditions for Venus and Earth remains an area of active research. Among the intrinsic and external influences on the Venusian climate history are orbital changes due to giant planet migration that have both variable incident flux and tidal heating consequences. Here, we present the results of a study that explores the effect of Jupiter’s location on the orbital parameters of Venus and subsequent potential water-loss scenarios. Our dynamical simulations show that various scenarios of Jovian migration could have resulted in orbital eccentricities for Venus as high as 0.31. We quantify the implications of the increased eccentricity, including tidal energy, surface energy flux, and the variable insolation flux expected from the faint young Sun. The tidal circularization timescale calculations demonstrate that a relatively high tidal dissipation factor is required to reduce the eccentricity of Venus to the present value, which implies a high initial water inventory. We further estimate the consequences of high orbital eccentricity on water loss, and estimate that the water-loss rate may have increased by at least ∼5% compared with the circular orbit case as a result of orbital forcing. We argue that these eccentricity variations for the young Venus may have accelerated the atmospheric evolution of Venus toward the inevitable collapse of the atmosphere into a runaway greenhouse state. The presence of giant planets in exoplanetary systems may likewise increase the expected rate of Venus analogs in those systems.

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3