Orbital Dynamics and the Evolution of Planetary Habitability in the AU Mic System

Author:

Kane Stephen R.ORCID,Foley Bradford J.ORCID,Hill Michelle L.ORCID,Unterborn Cayman T.ORCID,Barclay ThomasORCID,Cale BrysonORCID,Gilbert Emily A.ORCID,Plavchan PeterORCID,Wittrock Justin M.ORCID

Abstract

Abstract The diverse planetary systems that have been discovered are revealing the plethora of possible architectures, providing insights into planet formation and evolution. They also increase our understanding of system parameters that may affect planetary habitability, and how such conditions are influenced by initial conditions. The AU Mic system is unique among known planetary systems in that it is a nearby, young, multiplanet transiting system. Such a young and well-characterized system provides an opportunity for orbital dynamical and habitability studies for planets in the very early stages of their evolution. Here, we calculate the evolution of the Habitable Zone of the system through time, including the pre-main-sequence phase that the system currently resides in. We discuss the planetary atmospheric processes occurring for an Earth-mass planet during this transitional period, and provide calculations of the climate state convergence age for both volatile rich and poor initial conditions. We present results of an orbital dynamical analysis of the AU Mic system that demonstrate the rapid eccentricity evolution of the known planets, and show that terrestrial planets within the Habitable Zone of the system can retain long-term stability. Finally, we discuss follow-up observation prospects, detectability of possible Habitable Zone planets, and how the AU Mic system may be used as a template for studies of planetary habitability evolution.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3