All Comets are Somewhat Hyperactive and the Implications Thereof

Author:

Sunshine Jessica M.ORCID,Feaga Lori M.ORCID

Abstract

Abstract We critically examine what hyperactivity on a comet entails, fully develop the A’Hearn Model for Hyperactivity based on the analyses of data collected for the Deep Impact encounter of comet 103P/Hartley 2, describe manifestations of hyperactivity suggested on many, if not all, comets, and give implications of hyperactivity for future cometary exploration. The A’Hearn model requires a highly volatile ice reservoir within a comet to undergo sublimation, escape the nucleus, and drive out less volatile ices along its path to the surface. Once in the coma, the less volatile ice eventually sublimates, creating a secondary source of that gas in the coma, which is generally displaced anti-sunward and not distributed symmetrically about the nucleus. The secondary source of gas increases the total production of the less volatile species in the coma, sometimes well above that expected if the total surface was undergoing sublimation. We argue that based on the simple assumptions of the A’Hearn model and the fact that several comets display one or more of the characteristics of hyperactivity detailed here, it is probable that nearly all comets experience some degree of hyperactivity. Of significance, the ice that is brought from deep within the nucleus into the coma via the process described by the A’Hearn model is the least thermally altered and is thus the most pristine ice in the comet. Therefore, it behooves future mission teams to consider cryogenically sampling coma ice, rather than or in addition to attempting a direct nucleus sample, for a better understanding of the unaltered ices and conditions present in the protoplanetary disk.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3