Inferring the CO2 Abundance in Comet 45P/Honda-Mrkos-Pajdušáková from [O i] Observations: Implications for the Source of Icy Grains in Cometary Comae

Author:

Huffman Mikayla R.ORCID,McKay Adam J.ORCID,Cochran Anita L.ORCID

Abstract

Abstract The study of cometary composition is important for understanding our solar system's early evolutionary processes. Carbon dioxide (CO2) is a common hypervolatile in comets that can drive activity but is more difficult to study than other hypervolatiles owing to severe telluric absorption. CO2 can only be directly observed from space-borne assets. Therefore, a proxy is needed to measure CO2 abundances in comets using ground-based observations. The flux ratio of the [O i] λ5577 line to the sum of the [O i] λ6300 and [O i] λ6364 lines (hereafter referred to as the [O i] line ratio) has, with some success, been used in the past as such a proxy. We present an [O i] line ratio analysis of comet 45P/Honda-Mrkos-Pajdušáková (HMP), using data obtained with the Tull Coudé Spectrograph on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory, taken from UT 2017 February 21–23, when the comet was at heliocentric distances of 1.12–1.15 au. HMP is a hyperactive Jupiter-family comet (JFC). Icy grains driven out by CO2 sublimation have been proposed as a driver of hyperactivity, but the CO2 abundance of HMP has not been measured. From our [O i] line ratio measurements, we find a CO2/H2O ratio for HMP of 22.9% ± 1.4%. We compare the CO2/H2O ratios to the active fractions of the nine comets (including HMP) in the literature that have data for both values. We find no correlation. These findings imply that CO2 sublimation driving out icy grains is not the only factor influencing active fractions for cometary nuclei.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3