Chemistry of Complex Organic Molecules in the V883 Ori Disk Revealed by ALMA Band 3 Observations

Author:

Yamato YoshihideORCID,Notsu ShotaORCID,Aikawa YuriORCID,Okoda YukiORCID,Nomura HidekoORCID,Sakai NamiORCID

Abstract

Abstract Complex organic molecules (COMs) in protoplanetary disks are key to understanding the origin of volatiles in comets in our solar system, yet the chemistry of COMs in protoplanetary disks remains poorly understood. Here, we present Atacama Large Millimeter/submillimeter Array Band 3 observations of the disk around the young outbursting star V883 Ori, where the COMs sublimate from ices and are thus observable thanks to the warm condition of the disk. We have robustly identified ten oxygen-bearing COMs including 13C isotopologues in the disk-integrated spectra. The radial distributions of the COM emission, revealed by the detailed analyses of the line profiles, show the inner emission cavity, similar to the previous observations in Band 6 and Band 7. We found that the COMs abundance ratios with respect to methanol are significantly higher than those in the warm protostellar envelopes of IRAS 16293-2422 and similar to the ratios in the solar system comet 67P/Churyumov-Gerasimenko, suggesting the efficient (re)formation of COMs in protoplanetary disks. We also constrained the 12C/13C and D/H ratios of COMs in protoplanetary disks for the first time. The 12C/13C ratios of acetaldehyde, methyl formate, and dimethyl ether are consistently lower (∼20–30) than the canonical ratio in the interstellar medium (∼69), indicating the efficient 13C-fractionation of CO. The D/H ratios of methyl formate are slightly lower than the values in IRAS 16293-2422, possibly pointing to the destruction and reformation of COMs in disks. We also discuss the implications for nitrogen and sulfur chemistry in protoplanetary disks.

Publisher

American Astronomical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3