Single-band VLBI Absolute Astrometry

Author:

Petrov LeonidORCID

Abstract

Abstract The ionospheric path delay impacts single-band, very long baseline interferometry (VLBI) group delays, which limits their applicability for absolute astrometry. I consider two important cases: when observations are made simultaneously in two bands, but delays in only one band are available for a subset of observations; and when observations are made in one-band design. I developed optimal procedures of data analysis for both cases using Global Navigation Satellite System (GNSS) ionosphere maps, provided a stochastic model that describes ionospheric errors, and evaluated their impact on source position estimates. I demonstrate that the stochastic model is accurate at a level of 15%. I found that using GNSS ionospheric maps as is introduces serious biases in estimates of declination and I developed a procedure that almost eliminates them. I found serendipitously that GNSS ionospheric maps have multiplicative errors and have to be scaled by 0.85 in order to mitigate the declination bias. A similar scale factor was found in comparison of the vertical total electron content from satellite altimetry against GNSS ionospheric maps. I favor interpretation of this scaling factor as a manifestation of the inadequacy of the thin-shell model of the ionosphere. I showed that we are able to model the ionospheric path delay to the extent that no noticeable systematic errors emerge and we are able to assess adequately the contribution of the ionosphere-driven random errors on source positions. This makes single-band absolute astrometry a viable option that can be used for source position determination.

Funder

NASA ∣ Earth Sciences Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3