From binary to singular: The AGN PSO J334.2028+1.4075 under the high-resolution scope

Author:

Benke P.,Gabányi K. É.,Frey S.,An T.,Gurvits L. I.,Kun E.,Mohan P.,Paragi Z.,Ros E.

Abstract

Context. PSO J334.2028+1.4075 (PSO J334) is a luminous quasar located at redshift z = 2.06. The source gained attention when periodic flux density variations were discovered in its optical light curve. These variations were initially interpreted as the variability due to the orbital motion of a supermassive black hole binary (SMBHB) residing in a single circumbinary accretion disk. The orbital separation was determined to be 0.006 pc with an in-spiral time of 7 yr in the rest frame of PSO J334. These findings suggested the quasar could be in the gravitational wave emitting phase of its merger and so extended multiwavelength observations were commenced. However, subsequent observations provided evidence against the binary hypothesis as no optical periodicity was found on extended time baselines. On the other hand, detailed radio analysis with the Karl G. Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA) revealed a lobe-dominated quasar at kiloparsec scales, and possibly a precessing jet, which could retain PSO J334 as a binary SMBH candidate. Aims. We aim to study both the large- and small-scale radio structures in PSO J334 to provide additional evidence for or against the binary scenario. Methods. We observed the source at 1.7 GHz with the European Very Long Baseline Interferometry Network (EVN), and at 1.5 and 6.2 GHz with the VLA, at frequencies that complement the previous radio interferometric study. Results. Our images reveal a single component at parsec scales slightly resolved in the southeast-northwest direction and a lobe-dominated quasar at kiloparsec scales with a complex structure. The source morphology and polarization in our VLA maps suggest that the jet is interacting with dense clumps of the ambient medium. While we also observe a misalignment between the inner jet and the outer lobes, we suggest that this is due to the restarted nature of the radio jet activity and the possible presence of a warped accretion disk rather than due to the perturbing effects of a companion SMBH. Conclusions. Our analysis suggests that PSO J334 is most likely a jetted active galactic nucleus with a single SMBH, and there is no clear evidence of a binary SMBH system in its central engine.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3