Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics

Author:

Williams Thomas G.ORCID,Schinnerer EvaORCID,Emsellem EricORCID,Meidt SharonORCID,Querejeta MiguelORCID,Belfiore FrancescoORCID,Bešlić Ivana,Bigiel FrankORCID,Chevance MélanieORCID,Dale Daniel A.ORCID,Glover Simon C. O.ORCID,Grasha KathrynORCID,Klessen Ralf S.ORCID,Diederik Kruijssen J. M.ORCID,Leroy Adam K.ORCID,Pan Hsi-AnORCID,Pety JérômeORCID,Pessa Ismael,Rosolowsky ErikORCID,Saito ToshikiORCID,Santoro FrancescoORCID,Schruba Andreas,Sormani Mattia C.ORCID,Sun JiayiORCID,Watkins Elizabeth J.ORCID

Abstract

Abstract We apply the Tremaine–Weinberg method to 19 nearby galaxies using stellar mass surface densities and velocities derived from the PHANGS-MUSE survey, to calculate (primarily bar) pattern speeds (ΩP). After quality checks, we find that around half (10) of these stellar-mass-based measurements are reliable. For those galaxies, we find good agreement between our results and previously published pattern speeds, and we use rotation curves to calculate major resonance locations (corotation radii and Lindblad resonances). We also compare these stellar-mass-derived pattern speeds with Hα (from MUSE) and CO(J = 2 − 1) emission from the PHANGS-ALMA survey. We find that in the case of these clumpy interstellar medium (ISM) tracers, this method erroneously gives a signal that is simply the angular frequency at a representative radius set by the distribution of these clumps (Ωclump), and that this Ωclump is significantly different from ΩP (∼20% in the case of Hα, and ∼50% in the case of CO). Thus, we conclude that it is inadvisable to use “pattern speeds” derived from ISM kinematics. Finally, we compare our derived pattern speeds and corotation radii, along with bar properties, to the global parameters of these galaxies. Consistent with previous studies, we find that galaxies with a later Hubble type have a larger ratio of corotation radius to bar length, more molecular-gas-rich galaxies have higher ΩP, and more bulge-dominated galaxies have lower ΩP. Unlike earlier works, however, there are no clear trends between the bar strength and ΩP, nor between the total stellar mass surface density and the pattern speed.

Funder

EC ∣ European Research Council

Deutsche Forschungsgemeinschaft

National Science Foundation

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3