The gas morphology of nearby star-forming galaxies

Author:

Stuber Sophia K.ORCID,Schinnerer Eva,Williams Thomas G.ORCID,Querejeta MiguelORCID,Meidt Sharon,Emsellem ÉricORCID,Barnes Ashley,Klessen Ralf S.,Leroy Adam K.,Neumann Justus,Sormani Mattia C.ORCID,Bigiel FrankORCID,Chevance MélanieORCID,Dale DannyORCID,Faesi ChristopherORCID,Glover Simon C. O.ORCID,Grasha Kathryn,Diederik Kruijssen J. M.ORCID,Liu DaizhongORCID,Pan Hsi-an,Pety JérômeORCID,Pinna Francesca,Saito ToshikiORCID,Usero AntonioORCID,Watkins Elizabeth J.

Abstract

A galaxy’s morphology stems from the secular and environmental processes taking place over the course of its evolutionary history. Thus, it has consistently served as an important tool for gaining insights into galaxy evolution. In this work, we visually classified morphologies on cloud-scales based on the molecular gas distribution of a large sample of 79 nearby main sequence galaxies, using 1″ resolution CO(2–1) ALMA observations taken as part of the PHANGS survey. For this purpose, we devised a morphology classification scheme for different types of bars, spiral arms (grand-design, flocculent, multi-arm and smooth), and rings (central and non-central rings) that are similar to the well established optical ones. Furthermore, we introduced bar lane classes. In general, our cold gas-based morphologies is in good agreement with the ones based on stellar light. Both of our bars, as well as the grand-design spiral arms, are preferentially found at the higher mass end of our sample. Our gas-based classification indicates a potential for a misidentification of unbarred galaxies in the optical when massive star formation is present. Central or nuclear rings are present in a third of the sample, with a strong preference seen for barred galaxies (59%). As stellar bars are present in 45 ± 5% of our sample galaxies, we explore the utility of molecular gas as tracer of bar lane properties. We find that more curved bar lanes have a shorter radial extent in molecular gas and reside in galaxies with lower molecular to stellar mass ratios than those with straighter geometries. Galaxies display a wide range of CO morphologies and this work is aimed at providing a catalogue of morphological features in a representative sample of nearby galaxies.

Funder

German Research Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3