A Detailed Characterization of HR 8799's Debris Disk with ALMA in Band 7

Author:

Faramaz Virginie,Marino SebastianORCID,Booth Mark,Matrà LucaORCID,Mamajek Eric E.ORCID,Bryden Geoffrey,Stapelfeldt Karl R.ORCID,Casassus SimonORCID,Cuadra Jorge,Hales Antonio S.ORCID,Zurlo AliceORCID

Abstract

Abstract The exoplanetary system of HR 8799 is one of the rare systems in which multiple planets have been directly imaged. Its architecture is strikingly similar to that of the solar system, with the four imaged giant planets surrounding a warm dust belt analogous to the Asteroid Belt, and themselves being surrounded by a cold dust belt analog to the Kuiper Belt. Previous observations of this cold belt with ALMA in Band 6 (1.3 mm) revealed its inner edge, but analyses of the data differ on its precise location. It was therefore unclear whether or not the outermost planet HR 8799 b was dynamically sculpting it. We present here new ALMA observations of this debris disk in Band 7 (340 GHz, 880 μm). These are the most detailed observations of this disk obtained so far, with a resolution of 1″ (40 au) and sensitivity of 9.8 μJy beam−1, which allowed us to recover the disk structure with high confidence. In order to constrain the disk morphology, we fit its emission using radiative transfer models combined with a Markov Chain Monte Carlo procedure. We find that this disk cannot be adequately represented by a single power law with sharp edges. It exhibits a smoothly rising inner edge and smoothly falling outer edge, with a peak in between, as expected from a disk that contains a high-eccentricity component, hence confirming previous findings. Whether this excited population and inner edge shape stem from the presence of an additional planet remains, however, an open question.

Funder

NASA ∣ Jet Propulsion Laboratory

Deutsche Forschungsgemeinschaft

MINEDUC ∣ CONICYT ∣ Fondo Nacional de Desarrollo Científico y Tecnológico

National Aeronautics and Space Administration

ANID ∣ Millennium Science Initiative Program ∣

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3