Imaging detection of the inner dust belt and the four exoplanets in the HR 8799 system with JWST’s MIRI coronagraph

Author:

Boccaletti AnthonyORCID,Mâlin MathildeORCID,Baudoz PierreORCID,Tremblin PascalORCID,Perrot ClémentORCID,Rouan Daniel,Lagage Pierre-Olivier,Whiteford Niall,Mollière PaulORCID,Waters Rens,Henning Thomas,Decin LeenORCID,Güdel ManuelORCID,Vandenbussche BartORCID,Absil Olivier,Argyriou IoannisORCID,Bouwman JeroenORCID,Cossou ChristopheORCID,Coulais AlainORCID,Gastaud René,Glasse AlistairORCID,Glauser Adrian M.ORCID,Kamp IngaORCID,Kendrew SarahORCID,Krause Oliver,Lahuis Fred,Mueller MichaelORCID,Olofsson GoranORCID,Patapis PolychronisORCID,Pye JohnORCID,Royer PierreORCID,Serabyn Eugene,Scheithauer SilviaORCID,Colina LuisORCID,van Dishoeck Ewine F.ORCID,Ostlin Göran,Ray Tom P.ORCID,Wright Gillian

Abstract

Context. The MIRI instrument on board JWST is now offering high-contrast imaging capacity at mid-IR wavelengths, thereby opening a completely new field of investigation for characterizing young exoplanetary systems. Aims. The multiplanet system HR 8799 is the first target observed with MIRI’s coronagraph as part of the MIRI-EC Guaranteed Time Observations (GTO) exoplanet program, launched in November 2022. We obtained deep observations in three coronagraphic filters, from ∼10 to 15 µm (F1065C, F1140C, F1550C), and one standard imaging filter at ∼20 µm (F2100W). The goal of this work is to extract photometry for the four planets and to detect and investigate the distribution of circumstellar dust. Methods. Using dedicated observations of a reference star, we tested several algorithms to subtract the stellar diffraction pattern, while preserving the fluxes of planets, which can be significantly affected by over-subtraction. To obtain correct measurements of the planet’s flux values, the attenuation by the coronagraphs as a function of their position must be accounted for, as well as an estimation of the normalisation with respect to the central star. We tested several procedures to derive averaged photometric values and error bars. Results. These observations have enabled us to obtain two main results. First, the four planets in the system are well recovered and we were able to compare their mid-IR fluxes, combined with near-IR flux values from the literature, to two exoplanet atmosphere models: ATMO and Exo-REM. As a main outcome, the MIRI photometric data points imply larger radii (1.04 or 1.17 RJ for planet b) and cooler temperatures (950 or 1000 K for planet b), especially for planet b, in better agreement with evolutionary models. Second, these JWST/MIRI coronagraphic data also deliver the first spatially resolved detection of the inner warm debris disk, the radius of which is constrained to about 15 au, with flux densities that are comparable to (but lower than) former unresolved spectroscopic measurements with Spitzer. Conclusions. The coronagraphs coming from MIRI ushers in a new vision of known exoplanetary systems that differs significantly from shorter wavelength, high-contrast images delivered by extreme adaptive optics from the ground. Inner dust belts and background galaxies become dominant at some mid-IR wavelengths, potentially causing confusion in detecting exoplanets. Future observing strategies and data reductions ought to take such features into account.

Funder

nasa

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3