Observations with the Differential Speckle Survey Instrument. X. Preliminary Orbits of K-dwarf Binaries and Other Stars

Author:

Horch Elliott P.ORCID,Broderick Kyle G.,Casetti-Dinescu Dana I.ORCID,Henry Todd J.ORCID,Fekel Francis C.ORCID,Muterspaugh Matthew W.ORCID,Willmarth Daryl W.ORCID,Winters Jennifer G.,van Belle Gerard T.ORCID,Clark Catherine A.,Everett Mark E.ORCID

Abstract

Abstract This paper details speckle observations of binary stars taken at the Lowell Discovery Telescope, the WIYN telescope, and the Gemini telescopes between 2016 January and 2019 September. The observations taken at Gemini and Lowell were done with the Differential Speckle Survey Instrument (DSSI), and those done at WIYN were taken with the successor instrument to DSSI at that site, the NN-EXPLORE Exoplanet Star and Speckle Imager (NESSI). In total, we present 378 observations of 178 systems, and we show that the uncertainty in the measurement precision for the combined data set is ∼2 mas in separation, ∼1°–2° in position angle depending on the separation, and ∼0.1 mag in magnitude difference. Together with data already in the literature, these new results permit 25 visual orbits and one spectroscopic-visual orbit to be calculated for the first time. In the case of the spectroscopic-visual analysis, which is done on the ternary star HD 173093, we calculate masses with a precision of better than 1% for all three stars in that system. Twenty-one of the visual orbits calculated have a K dwarf as the primary star; we add these to the known orbits of K-dwarf primary stars and discuss the basic orbital properties of these stars at this stage. Although incomplete, the data that exist so far indicate that binaries with K-dwarf primaries tend not to have low-eccentricity orbits at separations of one to a few tens of astronomical units, that is, on solar system scales.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3