Detecting New Visual Binaries in Gaia DR3 with Gaia and Two Micron All Sky Survey (2MASS) Photometry. I. New Candidate Binaries within 200 pc of the Sun

Author:

Medan IlijaORCID,Lépine SébastienORCID

Abstract

Abstract We present a method to identify likely visual binaries in Gaia eDR3 that does not rely on parallax or proper motion. This method utilizes the various point-spread function sizes of Two Micron All Sky Survey (2MASS)/Gaia, where at <2.″5 two stars may be unresolved in 2MASS but resolved by Gaia. Due to this, if close neighbors listed in Gaia are a resolved pair, the associated 2MASS source will have a predictable excess in the J band that depends on the ΔG of the pair. We demonstrate that the expected relationship between 2MASS excess and ΔG differs for chance alignments, as compared to true binary systems, when parameters like magnitude and location on the sky are also considered. Using these multidimensional distributions, we compute the likelihood of a close pair of stars to be a chance alignment, resulting in a total(clean) catalog of 68,725(50,230) likely binaries within 200 pc with a completeness rate of ∼75%(∼64%) and contamination rate of ∼14%(∼0.4%). Within this, we find 590 previously unidentified binaries from Gaia eDR3 with projected physical separations <30 au, where 138 systems were previously identified, and for s < 10 au we find that 4 out of 15 new likely binaries have not yet been observed with high-resolution imaging. We also demonstrate the potential of our catalog to determine physical separation distributions and binary fraction estimates, from this increase in low-separation binaries. Overall, this catalog provides a good complement for the study of local binary populations by probing smaller physical separations and mass ratios, and provides prime targets for speckle monitoring.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3