Detecting New Visual Binaries in Gaia DR3 with Gaia and Two Micron All Sky Survey (2MASS) Photometry. II. Speckle Observations of 16 Low-separation Systems

Author:

Medan IlijaORCID,Lépine SébastienORCID,Hartman ZacharyORCID,Stassun Keivan G.ORCID

Abstract

Abstract Here we present speckle observations of 16 low-separation (s < 30 au) high-probability candidate binaries from the catalog by Medan et al., where secondaries typically lack astrometric solutions in Gaia. From these speckle observations, we find a second component is always detected within the field of view. To determine if the detection is consistent with a physical companion or a chance alignment with a background source, we utilize a statistic from Tokovinin & Kiyaeva that compares the apparent motion of the systems to the expected orbital motion ( μ ). Using simulated binary orbits, we construct likelihood distributions of μ assuming various total errors on the measurements. With the hypothesis that the system is a true binary, we show that large measurement errors can result in μ values higher than expected for bound systems. Using simulated chance alignments, we also create similar likelihoods to test this alternative hypothesis. By combining likelihoods of both true binaries and chance alignments, we find that 15 of the 16 candidates are physical systems regardless of the level of measurement error. Our findings also accommodate all 16 as physical systems if the average, relative measurement error on the binary separations and position angles is ∼4.3%, which is consistent with our knowledge of the Gaia and Gemini speckle pipelines. Importantly, beyond assessing the likelihood of a true binary versus chance alignment, this quantitative assessment of the true average measurement error will allow more robust error estimates of mass determinations from short separation binaries with Gaia and/or Gemini speckle data.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3