Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 b

Author:

Zhou YifanORCID,Bowler Brendan P.ORCID,Wagner Kevin R.ORCID,Schneider GlennORCID,Apai DánielORCID,Kraus Adam L.ORCID,Close Laird M.ORCID,Herczeg Gregory J.ORCID,Fang MinORCID

Abstract

Abstract Recent discoveries of young exoplanets within their natal disks offer exciting opportunities to study ongoing planet formation. In particular, a planet’s mass accretion rate can be constrained by observing the accretion-induced excess emission. So far, planetary accretion is only probed by the Hα line, which is then converted to a total accretion luminosity using correlations derived for stars. However, the majority of the accretion luminosity is expected to emerge from hydrogen continuum emission, and is best measured in the ultraviolet (UV). In this paper, we present HST/WFC3/UVIS F336W (UV) and F656N (Hα) high-contrast imaging observations of PDS 70. Applying a suite of novel observational techniques, we detect the planet PDS 70 b with signal-to-noise ratios of 5.3 and 7.8 in the F336W and F656N bands, respectively. This is the first time that an exoplanet has been directly imaged in the UV. Our observed Hα flux of PDS 70 b is higher by than the most recent published result. However, the light curve retrieved from our observations does not support greater than 30% variability in the planet’s Hα emission in six epochs over a five month timescale. We estimate a mass accretion rate of . Hα accounts for 36% of the total accretion luminosity. Such a high proportion of energy released in line emission suggests efficient production of Hα emission in planetary accretion, and motivates using the Hα band for searches of accreting planets. These results demonstrate HST/WFC3/UVIS’s excellent high-contrast imaging performance and highlight its potential for planet formation studies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3