Constraints on PDS 70 b and c from the dust continuum emission of the circumplanetary discs considering in situ dust evolution

Author:

Shibaike Y.ORCID,Mordasini C.ORCID

Abstract

Context. The young T Tauri star PDS 70 has two gas accreting planets sharing one large gap in a pre-transitional disc. Dust continuum emission from PDS 70 c has been detected by Atacama Large Millimeter/submillimeter Array (ALMA) Band 7, considered as the evidence of a circumplanetary disc. However, there has been no detection of the dust emission from the CPD of PDS 70 b. Aims. We constrain the planet mass and the gas accretion rate of the planets by introducing a model of dust evolution in the CPDs and reproducing the detection and non-detection of the dust emission. Methods. We first develop a 1D steady gas disc model of the CPDs reflecting the planet properties. We then calculate the radial distribution of the dust profiles considering the dust evolution in the gas disc and calculate the total flux density of dust thermal emission from the CPDs. Results. We find positive correlations between the flux density of dust emission and three planet properties, the planet mass, gas accretion rate, and their product called ‘MMdot’. We then find that the MMdot of PDS 70 c is ≥4 × 10−7 MJ2 yr−1, corresponding to the planet mass of ≥5 MJ and the gas accretion rate of ≥2 × 10−8 MJ yr−1. This is the first case to succeed in obtaining constraints on planet properties from the flux density of dust continuum emission from a CPD. We also find some loose constraints on the properties of PDS 70 b from the non-detection of its dust emission. Conclusions. We propose possible scenarios for PDS 70 b and c explaining the non-detection respectively detection of the dust emission from their CPDs. The first explanation is that planet c has larger planet mass, larger gas accretion rate, or both than planet b. The other possibility is that the CPD of planet c has a larger amount of dust supply, weaker turbulence, or both than that of planet b. If the dust supply to planet c is larger than b due to its closeness to the outer dust ring, it is also quantitatively consistent with that planet c has weaker Hα line emission than planet b considering the dust extinction effect.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Japan Society for the Promotion of Science

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outflow Driven by a Protoplanet Embedded in the TW Hya Disk;The Astrophysical Journal Letters;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3