Revisiting Kepler Transiting Systems: Unvetting Planets and Constraining Relationships among Harmonics in Phase Curves

Author:

Niraula PrajwalORCID,Shporer AviORCID,Wong IanORCID,de Wit JulienORCID

Abstract

Abstract Space-based photometric missions widely use statistical validation tools for vetting transiting planetary candidates, particularly when other traditional methods of planet confirmation are unviable. In this paper, we refute the planetary nature of three previously validated planets—Kepler-854 b, Kepler-840 b, and Kepler-699 b—and possibly a fourth, Kepler-747 b, using updated stellar parameters from Gaia and phase-curve analysis. In all four cases, the inferred physical radii rule out their planetary nature given the stellar radiation the companions receive. For Kepler-854 b, the mass derived from the host star’s ellipsoidal variation, which had not been part of the original vetting procedure, similarly points to a nonplanetary value. To contextualize our understanding of the phase curve for stellar-mass companions in particular and extend our understanding of high-order harmonics, we examine Kepler eclipsing binaries with periods between 1.5 and 10 days. Using a sample of 20 systems, we report a strong power-law relation between the second cosine harmonic of the phase-curve signal and the higher cosine harmonics, which supports the hypothesis that those signals arise from the tidal interaction between the binary components. We find that the ratio between the second- and third-harmonic amplitudes is 2.24 ± 0.48, in good agreement with the expected value of 2.4 from the classical formalism for the ellipsoidal distortion.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3