Abstract
Abstract
Most existing exoplanets are discovered using validation techniques rather than being confirmed by complementary observations. These techniques generate a score that is typically the probability of the transit signal being an exoplanet (y(x) = exoplanet) given some information related to that signal (represented by x). Except for the validation technique in Rowe et al. (2014), which uses multiplicity information to generate these probability scores, the existing validation techniques ignore the multiplicity boost information. In this work, we introduce a framework with the following premise: given an existing transit-signal vetter (classifier), improve its performance using multiplicity information. We apply this framework to several existing classifiers, which include vespa, Robovetter, AstroNet, ExoNet, GPC and RFC, and ExoMiner, to support our claim that this framework is able to improve the performance of a given classifier. We then use the proposed multiplicity boost framework for ExoMiner V1.2, which addresses some of the shortcomings of the original ExoMiner classifier, and validate 69 new exoplanets for systems with multiple Kepler Objects of Interests from the Kepler catalog.
Funder
NASA ∣ Ames Research Center
NASA ∣ NASA Headquarters
TESS GI Cycle 4
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献