SDSS-IV MaStar: Data-driven Parameter Derivation for the MaStar Stellar Library

Author:

Imig JulieORCID,Holtzman Jon A.ORCID,Yan RenbinORCID,Lazarz Daniel,Chen YanpingORCID,Hill LewisORCID,Thomas DanielORCID,Maraston ClaudiaORCID,Prescott Moire K. M.ORCID,Stringfellow Guy S.ORCID,Bizyaev DmitryORCID,Beaton Rachael L.ORCID,Drory NivORCID

Abstract

Abstract The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolution R ∼ 1800 and covering a wavelength range of 3622–10,354 Å. In this work, we derive five physical parameters for each spectrum in the library: effective temperature (T eff), surface gravity ( log g ), metallicity ([Fe/H]), microturbulent velocity ( log ( v micro ) ), and alpha-element abundance ([α/Fe]). These parameters are derived with a flexible data-driven algorithm that uses a neural network model. We train a neural network using the subset of 1675 MaStar targets that have also been observed in the Apache Point Observatory Galactic Evolution Experiment (APOGEE), adopting the independently-derived APOGEE Stellar Parameter and Chemical Abundance Pipeline parameters for this reference set. For the regions of parameter space not well represented by the APOGEE training set (7000 ≤ T ≤ 30,000 K), we supplement with theoretical model spectra. We present our derived parameters along with an analysis of the uncertainties and comparisons to other analyses from the literature.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3