A Self-consistent Data-driven Model for Determining Stellar Parameters from Optical and Near-infrared Spectra

Author:

Sizemore Logan,Llanes Diego,Kounkel MarinaORCID,Hutchinson BrianORCID,Stassun Keivan G.ORCID,Chandra VedantORCID

Abstract

Abstract Data-driven models, which apply machine learning to infer physical properties from large quantities of data, have become increasingly important for extracting stellar properties from spectra. In general, these methods have been applied to data in one wavelength regime or another. For example, APOGEE Net has been applied to near-IR spectra from the Sloan Digital Sky Survey (SDSS)–V APOGEE survey to predict stellar parameters (T eff, log g, and [Fe/H]) for all stars with T eff from 3000 to 50,000 K, including pre-main-sequence stars, OB stars, main-sequence dwarfs, and red giants. The increasing number of large surveys across multiple wavelength regimes provides the opportunity to improve data-driven models through learning from multiple data sets at once. In SDSS-V, a number of spectra of stars will be observed not just with APOGEE in the near-IR, but also with BOSS in the optical regime. Here, we aim to develop a complementary model, BOSS Net, that will replicate the performance of APOGEE Net in these optical data through label transfer. We further improve the model by extending it to brown dwarfs, as well as white dwarfs, resulting in a comprehensive coverage between 1700 < T eff < 100,000 K and 0 < log g < 10, to ensure BOSS Net can reliably measure parameters of most of the commonly observed objects within this parameter space. We also update APOGEE Net to achieve a comparable performance in the near-IR regime. The resulting models provide a robust tool for measuring stellar evolutionary states, and, in turn, enable characterization of the star-forming history of the Galaxy.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3