Inhomogeneity within Local Interstellar Clouds*

Author:

Linsky Jeffrey L.ORCID,Redfield SethORCID,Ryder Diana,Chasan-Taber Adina

Abstract

Abstract Analysis of interstellar absorption lines observed in high-resolution Hubble Space Telescope spectra of nearby stars provides temperatures, turbulent velocities, and kinetic properties of warm interstellar clouds. A new analysis of 97 interstellar-velocity components reveals a wide range of temperatures and turbulent velocities within the Local Interstellar Cloud (LIC) and the nearby Cluster of Interstellar Clouds (CLIC). These variations appear to be random with Gaussian distributions. We find no trends of these properties with stellar distance or angles from the Galactic Center, magnetic field, the main source of extreme-UV radiation (the star ϵ CMa), the center of the LIC, or the direction of inflowing interstellar matter into the heliosphere. The spatial scale for temperature variations in the LIC is likely smaller than 5100 au, a distance that the Sun will traverse in 1000 yr. Essentially all velocity components align with known warm clouds. We find that within 4 pc of the Sun, space is completely filled with partially ionized clouds, but at larger distances space is only partially filled with partially ionized clouds. We find that the neutral hydrogen number density in the LIC and likely other warm clouds in the CLIC is about 0.10 cm−3 rather than the 0.20 cm−3 density that may be representative of only the immediate environment of the LIC. The ≤3000–12,000 K temperature range for the gas is wider than the predictions of thermal equilibrium theoretical models of the warm neutral medium and warm ionized medium, and the high degree of inhomogeneity within clouds argues against simple theoretical models.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3