Bayesian Inference in Single-line Spectroscopic Binaries with a Visual Orbit

Author:

Videla Miguel,Mendez Rene A.ORCID,Clavería Rubén M.,Silva Jorge F.,Orchard Marcos E.

Abstract

Abstract We present a Bayesian inference methodology for the estimation of orbital parameters on single-line spectroscopic binaries with astrometric data, based on the No-U-Turn sampler Markov chain Monte Carlo algorithm. Our approach is designed to provide a precise and efficient estimation of the joint posterior distribution of the orbital parameters in the presence of partial and heterogeneous observations. This scheme allows us to directly incorporate prior information about the system—in the form of a trigonometric parallax, and an estimation of the mass of the primary component from its spectral type—to constrain the range of solutions, and to estimate orbital parameters that cannot be usually determined (e.g., the individual component masses), due to the lack of observations or imprecise measurements. Our methodology is tested by analyzing the posterior distributions of well-studied double-line spectroscopic binaries treated as single-line binaries by omitting the radial velocity data of the secondary object. Our results show that the system’s mass ratio can be estimated with an uncertainty smaller than 10% using our approach. As a proof of concept, the proposed methodology is applied to 12 single-line spectroscopic binaries with astrometric data that lacked a joint astrometric–spectroscopic solution, for which we provide full orbital elements. Our sample-based methodology allows us also to study the impact of different posterior distributions in the corresponding observations space. This novel analysis provides a better understanding of the effect of the different sources of information on the shape and uncertainty in the orbit and radial velocity curve.

Funder

MINEDUC ∣ CONICYT ∣ Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3