Abstract
Abstract
We present results from Speckle inteferometric observations of 15 visual binaries and one double-line spectroscopic binary, carried out with the HRCam Speckle camera of the SOAR 4.1 m telescope. These systems were observed as a part of an on-going survey to characterize the binary population in the solar vicinity, out to a distance of 250 pc. We obtained orbital elements and mass sums for our sample of visual binaries. The orbits were computed using a Markov Chain Monte Carlo algorithm that delivers maximum likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate their uncertainty. Their periods cover a range from 5 yr to more than 500 yr; and their spectral types go from early A to mid M, implying total system masses from slightly more than 4M⊙ down to 0.2M
⊙. They are located at distances between approximately 12 and 200 pc, mostly at low Galactic latitude. For the double-line spectroscopic binary YSC8, we present the first combined astrometric/radial-velocity orbit resulting from a self-consistent fit, leading to individual component masses of 0.897 ± 0.027 M
⊙ and 0.857 ± 0.026 M
⊙; and an orbital parallax of 26.61 ± 0.29 mas, which compares very well with the Gaia DR2 trigonometric parallax (26.55 ± 0.27 mas). In combination with published photometry and trigonometric parallaxes, we place our objects on an H-R diagram and discuss their evolutionary status. We also present a thorough analysis of the precision and consistency of the photometry available for them.
Funder
MINEDUC ∣ CONICYT ∣ Fondo Nacional de Desarrollo Científico y Tecnológico
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献