Time-resolved Optical Polarization Monitoring of the Most Variable Brown Dwarf

Author:

Manjavacas ElenaORCID,Miles-Páez Paulo A.ORCID,Karalidi TheodoraORCID,Vos Johanna M.ORCID,Galloway Max L.ORCID,Girard Julien H.ORCID

Abstract

Abstract Recent atmospheric models for brown dwarfs suggest that the existence of clouds in substellar objects is not needed to reproduce their spectra, nor their rotationally induced photometric variability, believed to be due to the heterogeneous cloud coverage of brown dwarf atmospheres. Cloud-free atmospheric models also predict that their flux should not be polarized, as polarization is produced by the light scattering of particles in the inhomogeneous cloud layers of brown dwarf atmospheres. To shed light on this dichotomy, we monitored the linear polarization and photometric variability of the most variable brown dwarf, 2MASS J21392676+0220226. We used FORS2 at the UT1 telescope to monitor the object in the z band for six hours, split on two consecutive nights, covering one-third of its rotation period. We obtained the Stokes parameters, and we derived its time-resolved linear polarization, for which we did not find significant linear polarization (P = 0.14% ± 0.07%). We modeled the linear polarimetric signal expected assuming a map with one or two spot-like features and two bands using a polarization-enabled radiative transfer code. We obtained values compatible with the time-resolved polarimetry obtained for 2MASS J21392676+0220226. The lack of significant polarization might be due to photometric variability produced mostly by banded structures or small-scale vortices, which cancel out the polarimetric signal from different regions of the dwarf’s disk. Alternatively, the lack of clouds in 2MASS J21392676+0220226 would also explain the lack of polarization. Further linear polarimetric monitoring of 2MASS J21392676+0220226, during at least one full rotational period, would help to confirm or discard the existence of clouds in its atmosphere.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3