NEOMOD: A New Orbital Distribution Model for Near-Earth Objects

Author:

Nesvorný DavidORCID,Deienno RogerioORCID,Bottke William F.ORCID,Jedicke RobertORCID,Naidu ShantanuORCID,Chesley Steven R.ORCID,Chodas Paul W.,Granvik MikaelORCID,Vokrouhlický DavidORCID,Brož Miroslav,Morbidelli Alessandro,Christensen Eric,Shelly Frank C.,Bolin Bryce T.

Abstract

Abstract Near-Earth Objects (NEOs) are a transient population of small bodies with orbits near or in the terrestrial planet region. They represent a mid-stage in the dynamical cycle of asteroids and comets, which starts with their removal from the respective source regions—the main belt and trans-Neptunian scattered disk—and ends as bodies impact planets, disintegrate near the Sun, or are ejected from the solar system. Here we develop a new orbital model of NEOs by numerically integrating asteroid orbits from main-belt sources and calibrating the results on observations of the Catalina Sky Survey. The results imply a size-dependent sampling of the main belt with the ν 6 and 3:1 resonances producing ≃30% of NEOs with absolute magnitudes H = 15 and ≃80% of NEOs with H = 25. Hence, the large and small NEOs have different orbital distributions. The inferred flux of H < 18 bodies into the 3:1 resonance can be sustained only if the main-belt asteroids near the resonance drift toward the resonance at the maximal Yarkovsky rate (≃2 × 10−4 au Myr−1 for diameter D = 1 km and semimajor axis a = 2.5 au). This implies obliquities θ ≃ 0° for a < 2.5 au and θ ≃ 180° for a > 2.5 au, both in the immediate neighborhood of the resonance (the same applies to other resonances as well). We confirm the size-dependent disruption of asteroids near the Sun found in previous studies. An interested researcher can use the publicly available NEOMOD Simulator to generate user-defined samples of NEOs from our model.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3