A geological telescope through the galaxy?

Author:

Kirkland C. L.1ORCID,Sutton P.2

Affiliation:

1. Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia

2. School of Mathematics and Physics, University of Lincoln, Lincoln LN6 7TS, UK

Abstract

We reside within a relatively interior position within the Milky Way galaxy, which hinders our ability to understand its structure. Nonetheless, astrophysical observations of other galaxies in unison with spectroscopic measurements have produced a model for the Milky Way as a grand design, barred, spiral arm galaxy, with either two or four arms. Viewing through the plane of the Milky Way is not possible with any current astrophysical technique. However, perhaps terrestrial geology can help where current observations of our stellar environment cannot. During the orbit of our Solar System around the galactic centre, Earth will have seen different cosmic surroundings, as a function of the Solar System's orbit (240 km s −1 ) that is faster than the spiral arm's density waves (210 km s −1 ). Specifically, if the terrestrial impact record, or proxies for it, in some cryptic way reflect perturbations on the gravity field of the local Solar System, then Earth may act as a geological orrery, with some interesting implications. Here we explore various models for the design of the Milky Way and compare these with geological proxies proposed by some as indicators for impact flux, through the deep time record within our planet. Isotope signatures in zircon are statistically coherent with a four-armed spiral model. However, even better correspondence is shown between the terrestrial isotopic record and more complex atomic hydrogen models of the galaxy.

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3