Outer Solar System Perihelion Gap Formation through Interactions with a Hypothetical Distant Giant Planet

Author:

Oldroyd William J.ORCID,Trujillo Chadwick A.ORCID

Abstract

Abstract Among the outer solar system minor planet orbits there is an observed gap in perihelion between roughly 50 and 65 au at eccentricities e ≳ 0.65. Through a suite of observational simulations, we show that the gap arises from two separate populations, the Extreme Trans-Neptunian Objects (ETNOs; perihelia q ≳ 40 au and semimajor axes a ≳ 150 au) and the Inner Oort Cloud objects (IOCs; q ≳ 65 au and a ≳ 250 au), and is very unlikely to result from a realistic single, continuous distribution of objects. We also explore the connection between the perihelion gap and a hypothetical distant giant planet, often referred to as Planet 9 or Planet X, using dynamical simulations. Some simulations containing Planet X produce the ETNOs, the IOCs, and the perihelion gap from a simple Kuiper-Belt-like initial particle distribution over the age of the solar system. The gap forms as particles scattered to high eccentricity by Neptune are captured into secular resonances with Planet X where they cross the gap and oscillate in perihelion and eccentricity over hundreds of kiloyears. Many of these objects reach a minimum perihelia in their oscillation cycle within the IOC region increasing the mean residence time of the IOC region by a factor of approximately five over the gap region. Our findings imply that, in the presence of a massive external perturber, objects within the perihelion gap will be discovered, but that they will be only ∼20% as numerous as the nearby IOC population (65 au ≲ q ≲ 100 au).

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generation of Low-inclination, Neptune-crossing Trans-Neptunian Objects by Planet Nine;The Astrophysical Journal Letters;2024-04-24

2. Past the outer rim, into the unknown: structures beyond the Kuiper Cliff;Monthly Notices of the Royal Astronomical Society: Letters;2023-09-20

3. Suppression of the inclination instability in the trans-Neptunian Solar system;Monthly Notices of the Royal Astronomical Society;2023-06-08

4. Tuning the Legacy Survey of Space and Time (LSST) Observing Strategy for Solar System Science;The Astrophysical Journal Supplement Series;2023-05-23

5. A Low-inclination Neutral Trans-Neptunian Object in an Extreme Orbit;The Astrophysical Journal Letters;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3