Suppression of the inclination instability in the trans-Neptunian Solar system

Author:

Das Arnav1ORCID,Batygin Konstantin2

Affiliation:

1. Division of Physics, Mathematics and Astronomy, California Institute of Technology , Pasadena, CA 91125 , USA

2. Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA 91125 , USA

Abstract

ABSTRACT The trans-Neptunian scattered disc exhibits unexpected dynamical structure, ranging from an extended dispersion of perihelion distance to a clustered distribution in orbital angles. Self-gravitational modulation of the scattered disc has been suggested in the literature as an alternative mechanism to Planet nine for sculpting the orbital architecture of the trans-Neptunian region. The numerics of this hypothesis have hitherto been limited to N < O(103) superparticle simulations that omit direct gravitational perturbations from the giant planets and instead model them as an orbit-averaged (quadrupolar) potential, through an enhanced J2 moment of the central body. For sufficiently massive discs, such simulations reveal the onset of collective dynamical behaviour – termed the ‘inclination instability’ – wherein orbital circularisation occurs at the expense of coherent excitation of the inclination. Here, we report N = O(104) GPU-accelerated simulations of a self-gravitating scattered disc (across a range of disc masses spanning 5–40 M⊕) that self-consistently account for intraparticle interactions as well as Neptune’s perturbations. Our numerical experiments show that even under the most favourable conditions, the inclination instability never ensues. Instead, due to scattering, the disc depletes. While our calculations show that a transient lopsided structure can emerge within the first few hundreds of Myr, the terminal outcomes of these calculations systematically reveal a scattered disc that is free of any orbital clustering. We conclude thus that the inclination instability mechanism is an inadequate explanation of the observed architecture of the Solar system.

Funder

Resnick Sustainability Institute for Science, Energy and Sustainability, California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-gravitational dynamics within the inner Oort cloud;Celestial Mechanics and Dynamical Astronomy;2024-06

2. Generation of Low-inclination, Neptune-crossing Trans-Neptunian Objects by Planet Nine;The Astrophysical Journal Letters;2024-04-24

3. Self-gravity of debris discs can strongly change the outcomes of interactions with inclined planets;Monthly Notices of the Royal Astronomical Society;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3