Flares, Rotation, Activity Cycles, and a Magnetic Star–Planet Interaction Hypothesis for the Far-ultraviolet Emission of GJ 436

Author:

Loyd R. O. ParkeORCID,Schneider P. C.ORCID,Jackman James A. G.ORCID,France KevinORCID,Shkolnik Evgenya L.ORCID,Arulanantham NicoleORCID,Cauley P. WilsonORCID,Llama JoeORCID,Schneider Adam C.ORCID

Abstract

Abstract Variability in the far-ultraviolet (FUV) emission produced by stellar activity affects photochemistry and heating in orbiting planetary atmospheres. We present a comprehensive analysis of the FUV variability of GJ 436, a field-age M2.5V star (P rot ≈ 44 days) that is orbited by a warm Neptune-sized planet (M ≈ 25 M , R ≈ 4.1 M , P orb ≈ 2.6 days). Observations at three epochs from 2012 to 2018 span nearly a full activity cycle, sample two rotations of the star and two orbital periods of the planet, and reveal a multitude of brief flares. From 2012 to 2018, the star’s 7.75 ± 0.10 yr activity cycle produced the largest observed variations, 38% ± 3% in the summed flux of the major FUV emission lines. In 2018, the variability due to rotation was 8% ± 2%. An additional 11% ± 1% scatter at a cadence of 10 minutes, which is treated as white noise in the fits, likely has both instrumental and astrophysical origins. Flares increased time-averaged emission by 15% over the 0.88 days of cumulative exposure, peaking as high as 25× quiescence. We interpret these flare values as lower limits given that flares too weak or too infrequent to have been observed likely exist. GJ 436’s flare frequency distribution at FUV wavelengths is unusual compared to other field-age M dwarfs, exhibiting a statistically significant dearth of high-energy (>4 × 1028 erg) events, which we hypothesize to be the result of a magnetic star–planet interaction (SPI) triggering premature flares. If an SPI is present, GJ 436 b’s magnetic field strength must be ≲100 G to explain the statistically insignificant increase in the orbit-phased FUV emission.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planetary perturbers: flaring star–planet interactions in Kepler and TESS;Monthly Notices of the Royal Astronomical Society;2023-11-03

2. The space weather around the exoplanet GJ 436b;Astronomy & Astrophysics;2023-10

3. Modeling the Chromosphere and Transition Region of Planet-hosting Star GJ 436;The Astrophysical Journal;2023-08-23

4. The space weather around the exoplanet GJ 436b;Astronomy & Astrophysics;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3