What’s the Difference? The Potential for Convolutional Neural Networks for Transient Detection without Template Subtraction

Author:

Acero-Cuellar TatianaORCID,Bianco FedericaORCID,Dobler GregoryORCID,Sako MasaoORCID,Qu HelenORCID,

Abstract

Abstract We present a study of the potential for convolutional neural networks (CNNs) to enable separation of astrophysical transients from image artifacts, a task known as “real–bogus” classification, without requiring a template-subtracted (or difference) image, which requires a computationally expensive process to generate, involving image matching on small spatial scales in large volumes of data. Using data from the Dark Energy Survey, we explore the use of CNNs to (1) automate the real–bogus classification and (2) reduce the computational costs of transient discovery. We compare the efficiency of two CNNs with similar architectures, one that uses “image triplets” (templates, search, and difference image) and one that takes as input the template and search only. We measure the decrease in efficiency associated with the loss of information in input, finding that the testing accuracy is reduced from ∼96% to ∼91.1%. We further investigate how the latter model learns the required information from the template and search by exploring the saliency maps. Our work (1) confirms that CNNs are excellent models for real–bogus classification that rely exclusively on the imaging data and require no feature engineering task and (2) demonstrates that high-accuracy (>90%) models can be built without the need to construct difference images, but some accuracy is lost. Because, once trained, neural networks can generate predictions at minimal computational costs, we argue that future implementations of this methodology could dramatically reduce the computational costs in the detection of transients in synoptic surveys like Rubin Observatory's Legacy Survey of Space and Time by bypassing the difference image analysis entirely.

Funder

LSST Corporation

National Science Foundation

U.S. Department of Energy

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3