Prediction of Wind Power with Machine Learning Models

Author:

Karaman Ömer Ali1ORCID

Affiliation:

1. Department of Electronic and Automation, Vocational School, Batman University, Batman 72100, Turkey

Abstract

Wind power is a vital power grid component, and wind power forecasting represents a challenging task. In this study, a series of multiobjective predictive models were created utilising a range of cutting-edge machine learning (ML) methodologies, namely, artificial neural networks (ANNs), recurrent neural networks (RNNs), convolutional neural networks, and long short-term memory (LSTM) networks. In this study, two independent data sets were combined and used to predict wind power. The first data set contained internal values such as wind speed (m/s), wind direction (°), theoretical power (kW), and active power (kW). The second data set was external values that contained the meteorological data set, which can affect the wind power forecast. The k-nearest neighbours (kNN) algorithm completed the missing data in the data set. The results showed that the LSTM, RNN, CNN, and ANN algorithms were powerful in forecasting wind power. Furthermore, the performance of these models was evaluated by incorporating statistical indicators of performance deviation to demonstrate the efficacy of the employed methodology effectively. Moreover, the performance of these models was evaluated by incorporating statistical indicators of performance deviation, including the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE) metrics to effectively demonstrate the efficacy of the employed methodology. When the metrics are examined, it can be said that ANN, RNN, CNN, and LSTM methods effectively forecast wind power. However, it can be said that the LSTM model is more successful in estimating the wind power with an R2 value of 0.9574, MAE of 0.0209, MSE of 0.0038, and RMSE of 0.0614.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Short-term wind power prediction via spatial-temporal analysis and deep residual networks;Li;Front. Energy Res.,2022

2. Wind Speed Forecasting using Machine Learning Approach based on Meteorological Data case study;Yetis;Energy Environ. Res.,2022

3. Two-Step Wind Power Prediction Approach with Improved Complementary Ensemble Empirical Mode Decomposition and Reinforcement Learning;Zhang;IEEE Syst. J.,2022

4. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch;Ummels;IEEE Trans. Energy Convers.,2007

5. Power Swing and Fault Detection in the Presence of Wind Farms Using Generator Speed Zero-Crossing Moment;Damchi;Int. Trans. Electr. Energy Syst.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3