Abstract
Abstract
Here we present a laboratory study demonstrating a low-temperature thermal oxidation reaction within H2O + H2S + O3 solid ice mixtures that produces observable sulfur anion products at temperatures as low as 90 K. This reaction primarily produces SO2, sulfur anions (including HSO
3
−
, HSO
4
−
, and SO
4
2
−
), and O2 at lower temperatures (90–140 K) and hydrated states of sulfuric acid (H2SO4: nH2O, where n = 0, 1, 4) at higher temperatures (150–250 K). We estimate that the overall activation energy to initiate these reactions is 20 ± 3 kJ mol−1, which is significantly lower than the activation energy required to oxidize SO2 to the sulfate ion. Given the detection of sulfur species on the surfaces of the Galilean satellites and the prevalence of radiolytically produced oxidants, we expect that these thermal reactions will play an important role in explaining the results obtained from future observations and missions that can measure the spatial distribution of these species.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献