Investigating Diurnal and Seasonal Turbulence Variations of the Martian Atmosphere Using a Spectral Approach

Author:

Murdoch NaomiORCID,Stott Alexander E.ORCID,Mimoun DavidORCID,Pinot BaptisteORCID,Chatain AudreyORCID,Spiga AymericORCID,Temel OrkunORCID,Garcia Jorge PlaORCID,Onodera KeisukeORCID,Lorenz RalphORCID,Gillier MartinORCID,Newman ClaireORCID,Garcia Raphael F.ORCID,Lange LucasORCID,Banfield DonORCID

Abstract

Abstract We use a spectral approach to analyze the pressure and wind data from the InSight mission and investigate the diurnal and seasonal trends. Our analyses show that the daytime pressure and wind spectra have slopes of approximately −1.7 and −1.3 and, therefore, do not follow the Kolmogorov scaling (as was also previously reported for a reduced data set in Banfield et al.). We find that the nighttime pressure spectral slope is close to −1 (as reported in Temel et al.), and that the wind speed spectral slope is close to −0.5, flatter than the theoretical slope expected for the shear-dominated regime. We observe strong nocturnal (likely shear-generated) turbulent behavior starting around L s = 150° (InSight sol 440) that shifts to progressively earlier local times before reaching the “5th season” (InSight sols 530–710) identified by Chatain et al.. The diurnal spectral slope analyses indicate an asymmetry in the diurnal behavior of the Martian boundary layer, with a slow growth and fast collapse mechanism. Finally, the low-frequency (5–30 mHz) pressure data exhibit large spectral slope oscillations. These occur particularly during the periods with a highly stable atmosphere and, therefore, may be linked to gravity wave activity.

Funder

Centre National d'Etudes Spatiales

Agence Nationale de la Recherche

National Aeronautics and Space Administration

Research Foundation Flanders

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An acoustic investigation of the near-surface turbulence on Mars;The Journal of the Acoustical Society of America;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3