An acoustic investigation of the near-surface turbulence on Mars

Author:

Chide Baptiste1ORCID,Blanc-Benon Philippe2ORCID,Bertrand Tanguy3,Jacob Xavier4,Lasue Jérémie5,Lorenz Ralph D.6ORCID,Montmessin Franck7ORCID,Murdoch Naomi8ORCID,Pla-Garcia Jorge9ORCID,Seel Fabian10ORCID,Schröder Susanne10,Stott Alexander E.8ORCID,de la Torre Juarez Manuel11ORCID,Wiens Roger C.12ORCID

Affiliation:

1. Space and Planetary Exploration Team, Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Laboratoire de Mécanique des Fluides et d'Acoustique, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Institut National des sciences appliquées Lyon, Université Lyon 1 2 , Ecully, France

3. Laboratoire d'études spatiales et d'instrumentation en astrophysique, Observatoire de Paris, Université Paris Sciences & Lettres, Sorbonne Université, Centre National de la Recherche Scientifique 3 , Meudon, France

4. Institut de Mécanique des Fluides de Toulouse, Université Toulouse 3, Institut National Polytechnique, Centre National de la Recherche Scientifique 4 , Toulouse, France

5. Institut de Recherche en Astrophysique et Planétologie, Université Toulouse 3, Centre National de la Recherche Scientifique, Centre National d'Etudes Spatiales 5 , Toulouse, France

6. Space Exploration Sector, Johns Hopkins Applied Physics Laboratory 6 , Laurel, Maryland 20723, USA

7. Laboratoire Atmosphères Observations Spatiales, Centre National de la Recherche Scientifique, Université Saint-Quentin-en-Yvelines, Sorbonne Université 7 , Guyancourt, France

8. Institut Supérieur de l'Aeronautique et de l'Espace, Université de Toulouse 8 , Toulouse, France

9. Centro de Astrobiologia 9 , Madrid, Spain

10. Institute of Optical Sensor Systems, German Aerospace Center 10 , Berlin, Germany

11. Jet Propulsion Laboratory, California Institute of Technology 11 , Pasadena, California 91109, USA

12. Department of Earth, Atmospheric, and Planetary Sciences, Purdue University 12 , West Lafayette, Indiana 47907, USA

Abstract

The Perseverance rover is carrying out an original acoustic experiment on Mars: the SuperCam microphone records the spherical acoustic waves generated by laser sparks at distances from 2 m to more than 8 m. These N-shaped acoustic waves scatter from the multiple local heterogeneities of the turbulent atmosphere. Therefore, large and random fluctuations of sound travel time and intensity develop as the waves cross the medium. The variances of the travel times and the scintillation index (normalized variance of the sound intensity) are studied within the mathematical formalism of the propagation of spherical acoustic waves through thermal turbulence to infer statistical properties of the Mars atmospheric temperature fluctuation field. The comparison with the theory is made by simplifying assumptions that do not include wind fluctuations and diffraction effects. Two Earth years (about one Martian year) of observations acquired during the maximum convective period (10:00–14:00 Mars local time) show a good agreement between the dataset and the formalism: the travel time variance diverges from the linear Chernov solution exactly where the density of occurrence of the first caustic reaches its maximum. Moreover, on average, waves travel faster than the mean speed of sound due to a fast path effect, which is also observed on Earth. To account for the distribution of turbulent eddies, several power spectra are tested and the best match to observation is obtained with a generalized von Karman spectrum with a shallower slope than the Kolmogorov cascade, ϕ(k)∝(1+k2L2)−4/3. It is associated with an outer scale of turbulence, L, of 11 cm at 2 m above the surface and a standard deviation of 6 K over 9 s for the temperature. These near-surface atmospheric properties are consistent with a weak to moderate wave scattering regime around noon with little saturation. Overall, this study presents an innovative and promising methodology to probe the near-surface atmospheric turbulence on Mars.

Publisher

Acoustical Society of America (ASA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3